
Package: ggside (via r-universe)
September 14, 2024

Type Package

Title Side Grammar Graphics

Version 0.3.1.9999

Maintainer Justin Landis <jtlandis314@gmail.com>

Description The grammar of graphics as shown in 'ggplot2' has provided
an expressive API for users to build plots. 'ggside' extends
'ggplot2' by allowing users to add graphical information about
one of the main panel's axis using a familiar 'ggplot2' style
API with tidy data. This package is particularly useful for
visualizing metadata on a discrete axis, or summary graphics on
a continuous axis such as a boxplot or a density distribution.

License MIT + file LICENSE

URL https://github.com/jtlandis/ggside

BugReports https://github.com/jtlandis/ggside/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

VignetteBuilder knitr

Depends ggplot2 (>= 3.5.0)

Imports grid, gtable, rlang, scales (>= 1.3.0), cli, glue, stats,
tibble, vctrs

Suggests tidyr, dplyr, testthat (>= 3.0.3), knitr, rmarkdown, vdiffr
(>= 1.0.0), ggdendro, viridis, waldo

Config/testthat/edition 3

Collate 'z-depricated.R' 'utils-ggproto.R' 'utils-calls.R'
'utils-ggplot2-reimpl-.R' 'utils-constructors.R' 'side-layer.R'
'constructor-.R' 'utils-.R' 'ggside.R' 'utils-side-facet.R'
'side-facet_.R' 'side-layout-.r' 'utils-side-coord.R'
'side-coord-cartesian.R' 'plot-construction.R' 'ggplot_add.R'
'add_gg.R' 'geom-sideabline.r' 'geom-sidebar.r'

1

https://github.com/jtlandis/ggside
https://github.com/jtlandis/ggside/issues

2 Contents

'geom-sideboxplot.r' 'geom-sidecol.r' 'geom-sidedensity.r'
'geom-sidefreqpoly.r' 'geom-sidefunction.r'
'geom-sidehistogram.r' 'geom-sidehline.r' 'geom-sidelabel.r'
'geom-sideline.r' 'geom-sidepath.r' 'geom-sidepoint.r'
'geom-sidesegment.r' 'geom-sidetext.r' 'geom-sidetile.r'
'geom-sideviolin.r' 'geom-sidevline.r' 'ggside-ggproto.r'
'ggside-package.r' 'ggside-themes.R' 'position_rescale.r'
'scales-sides-.R' 'scales-xycolour.R' 'scales-xyfill.R'
'utils-ggplot2-reimpl-facet.R' 'side-facet-wrap.R'
'side-facet-grid.R' 'side-facet-null.R' 'stats.r' 'zzz.R'

Repository https://jtlandis.r-universe.dev

RemoteUrl https://github.com/jtlandis/ggside

RemoteRef HEAD

RemoteSha 47c24a42b622a2524eeb2c843a1941cc75b43331

Contents
as_ggside . 3
check_scales_collapse . 4
geom_xsideabline . 5
geom_xsidebar . 7
geom_xsideboxplot . 11
geom_xsidedensity . 15
geom_xsidefreqpoly . 17
geom_xsidefunction . 20
geom_xsidehistogram . 23
geom_xsidelabel . 26
geom_xsideline . 29
geom_xsidepoint . 32
geom_xsidesegment . 34
geom_xsidetext . 37
geom_xsidetile . 40
geom_xsideviolin . 43
ggside . 46
ggside-deprecated . 47
ggside-scales-binned . 47
ggside-scales-continuous . 50
ggside-scales-discrete . 53
ggside_coord . 55
ggside_geom . 56
ggside_layer . 56
ggside_layout . 58
is.ggside . 58
parse_side_aes . 59
position_rescale . 59
scale_xcolour . 61

as_ggside 3

scale_xfill . 61
scale_ycolour_hue . 62
scale_yfill_hue . 62
stat_summarise . 63
theme_ggside_grey . 65
xside . 67
yside . 69

Index 70

as_ggside Explicit conversion to ggside object

Description

Function is only exported for possible extensions to ggside. ggplot2 objects are implicitly converted
to ggside objects by ’adding’ a ggside object such as a ggside_layer object.

Usage

as_ggside(x, ...)

Default S3 method:
as_ggside(x, ...)

S3 method for class 'ggplot'
as_ggside(x, ggside = NULL, ...)

S3 method for class 'ggside'
as_ggside(x, ggside = NULL, ...)

Arguments

x an object to convert

... unused argument

ggside new ggside object to add

4 check_scales_collapse

check_scales_collapse Extending base ggproto classes for ggside

Description

check_scales_collapse is a helper function that is meant to be called after the inherited Facet’s
compute_layout method

sidePanelLayout is a helper function that is meant to be called after the inherited Facet’s com-
pute_layout method and after check_scales_collapse

S3 class that converts old Facet into one that is compatible with ggside. Can also update ggside on
the object. Typically, the new ggproto will inherit from the object being replaced.

Usage

check_scales_collapse(data, params)

sidePanelLayout(layout, ggside)

ggside_facet(facet, ggside)

Arguments

data data passed through ggproto object

params parameters passed through ggproto object

layout layout computed by inherited ggproto Facet compute_layout method

ggside ggside object to update

facet Facet ggproto Object to replace

Value

ggproto object that can be added to a ggplot object

Extended Facets

The following is a list ggplot2 facets that are available to use by ggside base.

• FacetNull -> FacetSideNull

• FacetGrid -> FacetSideGrid

• FacetWrap -> FacetSideWrap

geom_xsideabline 5

geom_xsideabline Side Reference lines

Description

The xside and yside variants of geom_abline, geom_hline and geom_vline are geom_*abline, geom_*hline,
and geom_*vline.

Usage

geom_xsideabline(
mapping = NULL,
data = NULL,
...,
slope,
intercept,
na.rm = FALSE,
show.legend = NA

)

geom_ysideabline(
mapping = NULL,
data = NULL,
...,
slope,
intercept,
na.rm = FALSE,
show.legend = NA

)

geom_xsidehline(
mapping = NULL,
data = NULL,
...,
yintercept,
na.rm = FALSE,
show.legend = NA

)

geom_ysidehline(
mapping = NULL,
data = NULL,
...,
yintercept,
na.rm = FALSE,
show.legend = NA

)

6 geom_xsideabline

geom_xsidevline(
mapping = NULL,
data = NULL,
...,
xintercept,
na.rm = FALSE,
show.legend = NA

)

geom_ysidevline(
mapping = NULL,
data = NULL,
...,
xintercept,
na.rm = FALSE,
show.legend = NA

)

Arguments

mapping Set of aesthetic mappings created by aes().

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

geom_xsidebar 7

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

xintercept, yintercept, slope, intercept
Parameters that control the position of the line specifically for the xside or yside
variants. If these are set, data, mapping and show.legend are overridden.

geom_xsidebar Side bar Charts

Description

The xside and yside variants of geom_bar is geom_xsidebar and geom_ysidebar. These variants
both inherit from geom_bar and only differ on where they plot data relative to main panels.

The xside and yside variants of geom_col is geom_xsidecol and geom_ysidecol. These variants
both inherit from geom_col and only differ on where they plot data relative to main panels.

Usage

geom_xsidebar(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidebar(
mapping = NULL,
data = NULL,
stat = "count",

8 geom_xsidebar

position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
orientation = "y",
show.legend = NA,
inherit.aes = TRUE

)

geom_xsidecol(
mapping = NULL,
data = NULL,
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidecol(
mapping = NULL,
data = NULL,
position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
orientation = "y"

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function

geom_xsidebar 9

can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

just Adjustment for column placement. Set to 0.5 by default, meaning that columns
will be centered about axis breaks. Set to 0 or 1 to place columns to the left/right

10 geom_xsidebar

of axis breaks. Note that this argument may have unintended behaviour when
used with alternative positions, e.g. position_dodge().

width Bar width. By default, set to 90% of the resolution() of the data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

Aesthetics

Required aesthetics are in bold.

• x

• y

• fill or xfill Fill color of the xsidebar

• fill or yfill Fill color of the ysidebar

• width specifies the width of each bar

• height specifies the height of each bar

• alpha Transparency level of xfill or yfill

• size size of the border line.

See Also

geom_xsidehistogram, geom_ysidehistogram

Examples

p <-ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species, fill = Species)) +
geom_point()

#sidebar - uses StatCount
p +
geom_xsidebar() +
geom_ysidebar()

geom_xsideboxplot 11

#sidecol - uses Global mapping
p +

geom_xsidecol() +
geom_ysidecol()

geom_xsideboxplot Side boxplots

Description

The xside and yside variants of geom_boxplot is geom_xsideboxplot and geom_ysideboxplot.

Usage

geom_xsideboxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outliers = TRUE,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
staplewidth = 0,
varwidth = FALSE,
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE

)

geom_ysideboxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outliers = TRUE,

12 geom_xsideboxplot

outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
staplewidth = 0,
varwidth = FALSE,
na.rm = FALSE,
orientation = "y",
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_xsideboxplot 13

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

outliers Whether to display (TRUE) or discard (FALSE) outliers from the plot. Hiding or
discarding outliers can be useful when, for example, raw data points need to be
displayed on top of the boxplot. By discarding outliers, the axis limits will adapt
to the box and whiskers only, not the full data range. If outliers need to be hidden
and the axes needs to show the full data range, please use outlier.shape = NA
instead.

outlier.colour, outlier.color, outlier.fill, outlier.shape,
outlier.size, outlier.stroke, outlier.alpha

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for
the box.
In the unlikely event you specify both US and UK spellings of colour, the US
spelling will take precedence.

notch If FALSE (default) make a standard box plot. If TRUE, make a notched box plot.
Notches are used to compare groups; if the notches of two boxes do not overlap,
this suggests that the medians are significantly different.

notchwidth For a notched box plot, width of the notch relative to the body (defaults to
notchwidth = 0.5).

staplewidth The relative width of staples to the width of the box. Staples mark the ends of
the whiskers with a line.

14 geom_xsideboxplot

varwidth If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with
widths proportional to the square-roots of the number of observations in the
groups (possibly weighted, using the weight aesthetic).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

See Also

geom_*sideviolin

Examples

df <- expand.grid(UpperCase = LETTERS, LowerCase = letters)
df$Combo_Index <- as.integer(df$UpperCase)*as.integer(df$LowerCase)

p1 <- ggplot(df, aes(UpperCase, LowerCase)) +
geom_tile(aes(fill = Combo_Index))

#sideboxplots

p1 + geom_xsideboxplot(aes(y = Combo_Index)) +
geom_ysideboxplot(aes(x = Combo_Index)) +
#when mixing continuous/discrete scales
#use the following helper functions
scale_xsidey_continuous() +
scale_ysidex_continuous()

#sideboxplots with swapped orientation
#Note: They order of the layers are affects the default
scale type. If you were to omit the last two scales, the
data labels may be affected
ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species)) +

geom_xsideboxplot(aes(y = Species), orientation = "y") +
geom_point() +
scale_y_continuous() + scale_xsidey_discrete()

geom_xsidedensity 15

#If using the scale_(xsidey|ysidex)_* functions are a bit cumbersome,
Take extra care to recast your data types.
ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))+

geom_point() +
geom_xsideboxplot(aes(y = as.numeric(Species)), orientation = "y") +
geom_ysideboxplot(aes(x = as.numeric(Species)), orientation = "x")

geom_xsidedensity Side density distributions

Description

The xside and yside variants of geom_density is geom_xsidedensity and geom_ysidedensity.

Usage

geom_xsidedensity(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"

)

geom_ysidedensity(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,
na.rm = FALSE,
orientation = "y",
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

16 geom_xsidedensity

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat Use to override the default connection between geom_density() and stat_density().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be

geom_xsidefreqpoly 17

given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.

Value

XLayer or YLayer object to be added to a ggplot object

Examples

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point(size = 2) +
geom_xsidedensity() +
geom_ysidedensity() +
theme(axis.text.x = element_text(angle = 90, vjust = .5))

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point(size = 2) +
geom_xsidedensity(aes(y = after_stat(count)),position = "stack") +
geom_ysidedensity(aes(x = after_stat(scaled))) +
theme(axis.text.x = element_text(angle = 90, vjust = .5))

geom_xsidefreqpoly Side Frequency Polygons

Description

The xside and yside variants of geom_freqpoly is geom_xsidefreqpoly and geom_ysidefreqpoly.

Usage

geom_xsidefreqpoly(
mapping = NULL,
data = NULL,
stat = "bin",
position = "identity",
...,
na.rm = FALSE,

18 geom_xsidefreqpoly

show.legend = NA,
inherit.aes = TRUE

)

geom_ysidefreqpoly(
mapping = NULL,
data = NULL,
stat = "bin",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

geom_xsidefreqpoly 19

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

Examples

ggplot(diamonds, aes(price, carat, colour = cut)) +
geom_point() +
geom_xsidefreqpoly(aes(y=after_stat(count)),binwidth = 500) +
geom_ysidefreqpoly(aes(x=after_stat(count)),binwidth = .2)

20 geom_xsidefunction

geom_xsidefunction Side function plot

Description

The xside and yside variants of geom_function

Usage

geom_xsidefunction(
mapping = NULL,
data = NULL,
stat = "function",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_xsidefunction(
mapping = NULL,
data = NULL,
geom = "function",
position = "identity",
...,
fun,
xlim = NULL,
n = 101,
args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidefunction(
mapping = NULL,
data = NULL,
stat = "ysidefunction",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_ysidefunction(

geom_xsidefunction 21

mapping = NULL,
data = NULL,
geom = "ysidefunction",
position = "identity",
...,
fun,
ylim = NULL,
n = 101,
args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data Ignored by stat_function(), do not use.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth

22 geom_xsidefunction

= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

fun Function to use. Either 1) an anonymous function in the base or rlang formula
syntax (see rlang::as_function()) or 2) a quoted or character name referenc-
ing a function; see examples. Must be vectorised.

xlim Optionally, specify the range of the function.

n Number of points to interpolate along the x axis.

args List of additional arguments passed on to the function defined by fun.

ylim Optionally, restrict the range of the function to this range (y-axis)

Value

XLayer or YLayer object to be added to a ggplot object

geom_xsidehistogram 23

Examples

x<- rweibull(100, 2.6, 3)
y<- rweibull(100, 1.8, 3)
xy.df<- data.frame(cbind(x,y))
p <- ggplot(xy.df, aes(x, y)) +

geom_point(colour = "blue", size = 0.25) +
geom_density2d() +
geom_xsidedensity(fill = "blue", alpha = .3) +
geom_ysidedensity(fill = "blue", alpha = .3) +
stat_xsidefunction(fun = dweibull, args = list(shape = 1.8, scale = 3), colour = "red") +
stat_ysidefunction(fun = dweibull, args = list(shape = 2.6, scale = 3), colour = "red") +
theme_classic()

p

geom_xsidehistogram Side Histograms

Description

The xside and yside variants of geom_histogram is geom_xsidehistogram and geom_ysidehistogram.
These variants both inherit from geom_histogram and only differ on where they plot data relative
to main panels.

Usage

geom_xsidehistogram(
mapping = NULL,
data = NULL,
stat = "bin",
position = "stack",
...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidehistogram(
mapping = NULL,
data = NULL,
stat = "bin",
position = "stack",
...,
binwidth = NULL,
bins = NULL,

24 geom_xsidehistogram

na.rm = FALSE,
orientation = "y",
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth

geom_xsidehistogram 25

= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

Aesthetics

geom_*sidehistogram uses the same aesthetics as geom_*sidebar()

26 geom_xsidelabel

Examples

p <-ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species, fill = Species)) +
geom_point()

#sidehistogram
p +
geom_xsidehistogram(binwidth = 0.1) +
geom_ysidehistogram(binwidth = 0.1)
p +
geom_xsidehistogram(aes(y = after_stat(density)), binwidth = 0.1) +
geom_ysidehistogram(aes(x = after_stat(density)), binwidth = 0.1)

geom_xsidelabel Side label

Description

The xside and yside variants of geom_label.

Usage

geom_xsidelabel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidelabel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,

geom_xsidelabel 27

nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the

28 geom_xsidelabel

position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

size.unit How the size aesthetic is interpreted: as millimetres ("mm", default), points
("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

geom_xsideline 29

geom_xsideline Side line plot

Description

The xside and yside of geom_line. The xside and yside variants of geom_path

Usage

geom_xsideline(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_ysideline(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = "y",
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_xsidepath(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

30 geom_xsideline

geom_ysidepath(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_xsideline 31

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

arrow Arrow specification, as created by grid::arrow().

32 geom_xsidepoint

Value

XLayer or YLayer object to be added to a ggplot object

Examples

#sideline
ggplot(economics, aes(date, pop)) +

geom_xsideline(aes(y = unemploy)) +
geom_col()

geom_xsidepoint Side Points

Description

The ggside variants of geom_point is geom_xsidepoint() and geom_ysidepoint(). Both variants
inherit from geom_point, thus the only difference is where the data is plotted. The xside variant
will plot data along the x-axis, while the yside variant will plot data along the y-axis.

Usage

geom_xsidepoint(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidepoint(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_xsidepoint 33

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.

34 geom_xsidesegment

An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

Examples

ggplot(diamonds, aes(depth, table, alpha = .2)) +
geom_point() +
geom_ysidepoint(aes(x = price)) +
geom_xsidepoint(aes(y = price)) +
theme(

ggside.panel.scale = .3
)

geom_xsidesegment Side line Segments

Description

The xside and yside of geom_segment.

Usage

geom_xsidesegment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",

geom_xsidesegment 35

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidesegment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

36 geom_xsidesegment

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

arrow specification for arrow heads, as created by grid::arrow().

arrow.fill fill colour to use for the arrow head (if closed). NULL means use colour aes-
thetic.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

geom_xsidetext 37

Examples

library(dplyr)
library(tidyr)
library(ggdendro)
#dendrogram with geom_*sidesegment
df0 <- mutate(diamonds,
colclar = interaction(color, clarity,

sep = "_", drop = TRUE))
df1 <- df0 %>%

group_by(color, clarity, colclar, cut) %>%
summarise(m_price = mean(price))

df <- df1 %>%
pivot_wider(id_cols = colclar,

names_from = cut,
values_from = m_price,
values_fill = 0L)

mat <- as.matrix(df[,2:6])
rownames(mat) <- df[["colclar"]]
dst <- dist(mat)
hc_x <- hclust(dst)
lvls <- rownames(mat)[hc_x$order]
df1[["colclar"]] <- factor(df1[["colclar"]], levels = lvls)
dendrox <- dendro_data(hc_x)

p <- ggplot(df1, aes(x = colclar, cut)) +
geom_tile(aes(fill = m_price)) +
viridis::scale_fill_viridis(option = "magma") +
theme(axis.text.x = element_text(angle = 90, vjust = .5))

p +
geom_xsidesegment(data = dendrox$segments,aes(x = x, y = y, xend = xend, yend = yend))

geom_xsidetext Side text

Description

The xside and yside variants of geom_text.

Usage

geom_xsidetext(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,

38 geom_xsidetext

nudge_y = 0,
check_overlap = FALSE,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidetext(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
size.unit = "mm",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

geom_xsidetext 39

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

size.unit How the size aesthetic is interpreted: as millimetres ("mm", default), points
("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

40 geom_xsidetile

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

geom_xsidetile Side tile plot

Description

The xside and yside variants of geom_tile

Usage

geom_xsidetile(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_ysidetile(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_xsidetile 41

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

42 geom_xsidetile

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

linejoin Line join style (round, mitre, bevel).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

Examples

library(dplyr)
library(tidyr)
df <- mutate(diamonds,

colclar = interaction(color, clarity, sep = "_", drop = TRUE)) %>%
group_by(color, clarity, colclar, cut) %>%
summarise(m_price = mean(price))

xside_data <- df %>%
ungroup() %>%
select(colclar, clarity, color) %>%
mutate_all(~factor(as.character(.x), levels = levels(.x))) %>%
pivot_longer(cols = c(clarity, color)) %>% distinct()

p <- ggplot(df, aes(x = colclar, cut)) +
geom_tile(aes(fill = m_price)) +
viridis::scale_fill_viridis(option = "magma") +
theme(axis.text.x = element_blank())

p + geom_xsidetile(data = xside_data, aes(y = name, xfill = value)) +
guides(xfill = guide_legend(nrow = 8))

geom_xsideviolin 43

geom_xsideviolin Side Violin plots

Description

The xside and yside variants of geom_violin

Usage

geom_xsideviolin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
...,
draw_quantiles = NULL,
trim = TRUE,
bounds = c(-Inf, Inf),
scale = "area",
na.rm = FALSE,
orientation = "x",
show.legend = NA,
inherit.aes = TRUE

)

geom_ysideviolin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
...,
draw_quantiles = NULL,
trim = TRUE,
bounds = c(-Inf, Inf),
scale = "area",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
orientation = "y"

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

44 geom_xsideviolin

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat Use to override the default connection between geom_violin() and stat_ydensity().

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

draw_quantiles If not(NULL) (default), draw horizontal lines at the given quantiles of the density
estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

geom_xsideviolin 45

bounds Known lower and upper bounds for estimated data. Default c(-Inf, Inf) means
that there are no (finite) bounds. If any bound is finite, boundary effect of default
density estimation will be corrected by reflecting tails outside bounds around
their closest edge. Data points outside of bounds are removed with a warning

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

XLayer or YLayer object to be added to a ggplot object

See Also

geom_*sideboxplot

Examples

df <- expand.grid(UpperCase = LETTERS, LowerCase = letters)
df$Combo_Index <- as.integer(df$UpperCase)*as.integer(df$LowerCase)

p1 <- ggplot(df, aes(UpperCase, LowerCase)) +
geom_tile(aes(fill = Combo_Index))

#sideviolins
#Note - Mixing discrete and continuous axis scales
#using xsideviolins when the y aesthetic was previously
#mapped with a continuous varialbe will prevent
#any labels from being plotted. This is a feature that
#will hopefully be added to ggside in the future.

p1 + geom_xsideviolin(aes(y = Combo_Index)) +
geom_ysideviolin(aes(x = Combo_Index))

#sideviolins with swapped orientation
#Note - Discrete before Continuous
#If you are to mix Discrete and Continuous variables on

46 ggside

#one axis, ggplot2 prefers the discrete variable to be mapped
#BEFORE the continuous.
ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species)) +

geom_xsideviolin(aes(y = Species), orientation = "y") +
geom_point()

#Alternatively, you can recast the value as a factor and then
a numeric

ggplot(iris, aes(Sepal.Width, Sepal.Length, color = Species))+
geom_point() +
geom_xsideviolin(aes(y = as.numeric(Species)), orientation = "y") +
geom_ysideviolin(aes(x = as.numeric(Species)), orientation = "x")

ggside ggside options

Description

Set characteristics of side panels

Usage

ggside(
x.pos = NULL,
y.pos = NULL,
scales = NULL,
collapse = NULL,
draw_x_on = NULL,
draw_y_on = NULL,
strip = NULL,
respect_side_labels = NULL

)

Arguments

x.pos x side panel can either take "top" or "bottom"

y.pos y side panel can either take "right" or "left"

scales Determines side panel’s unaligned axis scale. Inputs are similar to facet_* scales
function. Default is set to "fixed", but "free_x", "free_y" and "free" are accept-
able inputs. For example, xside panels are aligned to the x axis of the main
panel. Setting "free" or "free_y" will cause all y scales of the x side Panels to be
independent.

collapse Determines if side panels should be collapsed into a single panel. Set "x" to
collapse all x side panels, set "y" to collapse all y side panels, set "all" to collapse
both x and y side panels.

ggside-deprecated 47

draw_x_on, draw_y_on
Determines where the axis is rendered. For example: By default, the bottom x-
axis is rendered on the bottom most panel per column. If set to "main", then the
axis is rendered on the bottom of the bottom most main panel. If set to "side",
then the x-axis is rendered on the bottom of the bottom most side panel(s). You
may apply this logic to all axis positions.

strip Determines if the strip should be rendered on the main plot or on their default
locations. Only has an effect on facet_grid.

respect_side_labels

Valid arguments are "default", "x", "y", "all", and "none" Indicates if panel spac-
ing should respect the axis labels. The default is to respect side panel labels ex-
cept when xside labels are on the same side as the yside panel. Note: setting this
parameter to "x" is to "respect the labels of the xside panel" and consequently
the yside labels, if present, are not respected.

Value

a object of class ’ggside_options’ or to be added to a ggplot

See Also

For more information regarding the ggside api: see xside or yside

ggside-deprecated Deprecated Functions

Description

The following functions have been deprecated.

as_ggsideFacet <- ggside_facet as_ggsideCoord <- ggside_coord

ggside-scales-binned Position scales for binning continuous data ggside scales

Description

The xside and yside variants of scale_x_binned/scale_y_binned. scale_xsidey_binned enables bet-
ter control on how the y-axis is rendered on the xside panel and scale_ysidex_binned enables better
control on how the x-axis is rendered on the yside panel.

48 ggside-scales-binned

Usage

scale_xsidey_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
transform = "identity",
guide = waiver(),
position = "left"

)

scale_ysidex_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
transform = "identity",
guide = waiver(),
position = "bottom"

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n.breaks The number of break points to create if breaks are not given directly.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

breaks One of:

• NULL for no breaks

ggside-scales-binned 49

• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::squish()) squishes out of bounds values into range.
• scales::censor for replacing out of bounds values with NA.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

right Should the intervals be closed on the right (TRUE, default) or should the intervals
be closed on the left (FALSE)? ’Closed on the right’ means that values at break
positions are part of the lower bin (open on the left), whereas they are part of the
upper bin when intervals are closed on the left (open on the right).

show.limits should the limits of the scale appear as ticks

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

50 ggside-scales-continuous

A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

Value

ggside_scale object inheriting from ggplot2::ScaleBinnedPosition

Examples

ggplot(iris, aes(Sepal.Width, Sepal.Length)) +
geom_point() + geom_xsidepoint(aes(y = Petal.Width, xcolour = Petal.Length)) +
scale_xsidey_binned(n.breaks = 4) +
scale_colour_steps(aesthetics ="xcolour", guide = guide_colorbar(available_aes = "xcolour")) +
theme(ggside.panel.scale.x = .3)

ggside-scales-continuous

Position scales for continuous data ggside scales

Description

The xside and yside variants of scale_x_continuous/scale_y_continuous. scale_xsidey_continuous
enables better control on how the y-axis is rendered on the xside panel and scale_ysidex_continuous
enables better control on how the x-axis is rendered on the yside panel.

Usage

scale_xsidey_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = scales::censor,
na.value = NA_real_,
transform = "identity",
guide = waiver(),

ggside-scales-continuous 51

position = "left",
sec.axis = waiver()

)

scale_xsidey_log10(...)

scale_xsidey_reverse(...)

scale_xsidey_sqrt(...)

scale_ysidex_log10(...)

scale_ysidex_reverse(...)

scale_ysidex_sqrt(...)

scale_ysidex_log10(...)

scale_ysidex_reverse(...)

scale_ysidex_sqrt(...)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two argu-
ments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

52 ggside-scales-continuous

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

... Other arguments passed on to scale_(y|x)side(x|y)_continuous()

ggside-scales-discrete 53

Value

ggside_scale object inheriting from ggplot2::ScaleContinuousPosition

Examples

library(ggside)
library(ggplot2)
adding continuous y-scale to the x-side panel, when main panel mapped to discrete data
ggplot(mpg, aes(hwy, class, colour = class)) +

geom_boxplot() +
geom_xsidedensity(position = "stack") +
theme(ggside.panel.scale = .3) +
scale_xsidey_continuous(minor_breaks = NULL, limits = c(NA,1))

#If you need to specify the main scale, but need to prevent this from
#affecting the side scale. Simply add the appropriate `scale_*side*_*()` function.
ggplot(mtcars, aes(wt, mpg)) +

geom_point() +
geom_xsidehistogram() +
geom_ysidehistogram() +
scale_x_continuous(

breaks = seq(1, 6, 1),
#would otherwise remove the histogram
#as they have a lower value of 0.
limits = (c(1, 6))
) +

scale_ysidex_continuous() #ensures the x-axis of the y-side panel has its own scale.

ggside-scales-discrete

Position scales for discrete data ggside scales

Description

The xside and yside variants of scale_x_discrete/scale_y_discrete. scale_xsidey_discrete enables
better control on how the y-axis is rendered on the xside panel and scale_ysidex_discrete enables
better control on how the x-axis is rendered on the yside panel.

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)

54 ggside-scales-discrete

• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

Value

ggside_scale object inheriting from ggplot2::ScaleDiscretePosition

ggside_coord 55

Examples

library(ggside)
library(ggplot2)
adding discrete y-scale to the x-side panel, when main panel mapped to continuous data
ggplot(mpg, aes(displ, hwy, colour = class)) +

geom_point() +
geom_xsideboxplot(aes(y=class), orientation = "y") +
theme(ggside.panel.scale = .3) +
scale_xsidey_discrete(guide = guide_axis(angle = 45))

#If you need to specify the main scale, but need to prevent this from
#affecting the side scale. Simply add the appropriate `scale_*side*_*()` function.
ggplot(mpg, aes(class, displ)) +

geom_boxplot() +
geom_ysideboxplot(aes(x = "all"), orientation = "x") +
scale_x_discrete(guide = guide_axis(angle = 90)) + #rotate the main panel text
scale_ysidex_discrete() #leave side panel as default

ggside_coord Coord Compatible with ggside

Description

S3 class that converts old Coord into one that is compatible with ggside. Can also update ggside on
the object. Typically, the new ggproto will inherit from the object being replaced.

Usage

ggside_coord(coord)

Default S3 method:
ggside_coord(coord)

S3 method for class 'CoordCartesian'
ggside_coord(coord)

S3 method for class 'CoordSide'
ggside_coord(coord)

S3 method for class 'CoordTrans'
ggside_coord(coord)

S3 method for class 'CoordFixed'
ggside_coord(coord)

Arguments

coord coord ggproto Object to replace

56 ggside_layer

ggside_geom ggside geom constructor

Description

utility function to make a ggside Geom

Usage

ggside_geom(class_name = NULL, geom = NULL, side = NULL, ...)

Arguments

class_name New class name for the ggproto object

geom The Geom ggproto to inherit from

side should the resulting object be configured for x or y

... additional members to add to the ggproto class.

ggside_layer New ggside layer

Description

utility function to make a ggside layer compatible with ggside internals

Usage

ggside_layer(
geom = NULL,
stat = NULL,
data = NULL,
mapping = NULL,
position = NULL,
params = list(),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE,
show.legend = NA,
key_glyph = NULL,
side = NULL

)

as_ggside_layer(layer, side)

ggside_layer 57

Arguments

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

params Additional parameters to the geom and stat.

58 is.ggside

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

key_glyph A legend key drawing function or a string providing the function name minus
the draw_key_ prefix. See draw_key for details.

side should the resulting ggplot2_layer be configured for x or y side

layer a LayerInstance object made from layer

ggside_layout Construct ggside layout

Description

Creates a new layout object required for ggside functionality

Usage

ggside_layout(layout)

Arguments

layout a ggproto Layout object

is.ggside Check ggside objects

Description

Check ggside objects

Usage

is.ggside(x)

is.ggside_layer(x)

is.ggside_options(x)

is.ggside_scale(x)

parse_side_aes 59

Arguments

x Object to test

Value

A logical value

parse_side_aes Extending base ggproto classes for ggside

Description

These ggproto classes are slightly modified from their respective inherited ggproto class. The
biggest difference is exposing ’x/yfill’, ’x/ycolour’, and ’x/ycolor’ as viable aesthetic mappings.

Usage

parse_side_aes(data, params)

Arguments

data data passed internally

params params available to ggproto object

Value

ggproto object that is usually passed to layer

position_rescale Rescale x or y onto new range in margin

Description

Take the range of the specified axis and rescale it to a new range about a midpoint. By default
the range will be calculated from the associated main plot axis mapping. The range will either be
the resolution or 5% of the axis range, depending if original data is discrete or continuous respec-
tively. Each layer called with position_rescale will possess an instance value that indexes with axis
rescale. By default, each position_rescale will dodge the previous call unless instance is specified
to a previous layer.

60 position_rescale

Usage

position_rescale(
rescale = "y",
midpoint = NULL,
range = NULL,
location = NULL,
instance = NULL

)

position_yrescale(
rescale = "y",
midpoint = NULL,
range = NULL,
location = NULL,
instance = NULL

)

position_xrescale(
rescale = "x",
midpoint = NULL,
range = NULL,
location = NULL,
instance = NULL

)

Arguments

rescale character value of "x" or "y". specifies which mapping data will be rescaled

midpoint default set to NULL. Center point about which the rescaled x/y values will re-
side.

range default set to NULL and auto generates from main mapping range. Specifies the
size of the rescaled range.

location specifies where position_rescale should try to place midpoint. If midpoint is
specified, location is ignored and placed at the specified location.

instance integer that indexes rescaled axis calls. instance may be specified and if a pre-
vious layer with the same instance exists, then the same midpoint and range are
used for rescaling. x and y are indexed independently.

Format

An object of class PositionRescale (inherits from Position, ggproto, gg) of length 10.

Value

a ggproto object inheriting from ’Position’ and can be added to a ggplot

scale_xcolour 61

scale_xcolour Scales for the *colour aesthetics

Description

These are the various scales that can be applied to the xsidebar or ysidebar colour aesthetics, such
as xcolour and ycolour. They have the same usage as existing standard ggplot2 scales.

Value

returns a ggproto object to be added to a ggplot

Related Functions

• scale_xcolour_hue

• scale_ycolour_hue

• scale_xcolour_discrete

• scale_ycolour_discrete

• scale_xcolour_continuous

• scale_ycolour_continuous

• scale_xcolour_manual

• scale_ycolour_manual

• scale_xcolour_gradient

• scale_ycolour_gradient

• scale_xcolour_gradientn

• scale_ycolour_gradientn

scale_xfill Scales for the *fill aesthetics

Description

These are the various scales that can be applied to the xsidebar or ysidebar fill aesthetics, such as
xfill and yfill. They have the same usage as existing standard ggplot2 scales.

Value

returns a ggproto object to be added to a ggplot

62 scale_yfill_hue

Related Functions

• scale_xfill_hue

• scale_yfill_hue

• scale_xfill_discrete

• scale_yfill_discrete

• scale_xfill_continuous

• scale_yfill_continuous

• scale_xfill_manual

• scale_yfill_manual

• scale_xfill_gradient

• scale_yfill_gradient

• scale_xfill_gradientn

• scale_yfill_gradientn

scale_ycolour_hue scale_ycolour_hue

Description

scale_ycolour_hue

scale_ycolour_manual

scale_ycolour_gradient

scale_ycolour_discrete

scale_ycolour_discrete

scale_ycolour_continuous

scale_ycolour_continuous

scale_yfill_hue scale_yfill_hue

Description

scale_yfill_hue

scale_yfill_manual

scale_yfill_gradient

scale_yfill_discrete

scale_yfill_continuous

stat_summarise 63

stat_summarise Summarise by grouping variable

Description

Applies a function to a specified grouping variable

Usage

stat_summarise(
mapping = NULL,
data = NULL,
geom = "bar",
position = "identity",
...,
fun = NULL,
args = list(),
show.legend = NA,
inherit.aes = TRUE

)

stat_summarize(
mapping = NULL,
data = NULL,
geom = "bar",
position = "identity",
...,
fun = NULL,
args = list(),
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

64 stat_summarise

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... additional arguments to pass to layer.

fun Summarising function to use. If no function provided it will default to length.

args List of additional arguments passed to the function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Format

An object of class StatSummarise (inherits from Stat, ggproto, gg) of length 5.

An object of class StatSummarize (inherits from Stat, ggproto, gg) of length 5.

Value

A Layer object to be added to a ggplot

Aesthetics

Using stat_summarise requires that you use domain as an aesthetic mapping. This allows you to
summarise other data instead of assuming that x is the function’s domain.

theme_ggside_grey 65

Examples

library(tidyr)
i <- gather(iris,"key","value",-Species)
ggplot(i, aes(Species, fill = key, domain = value)) +

geom_bar(aes(y = after_stat(summarise)), stat = "summarise", fun = mean) +
stat_summarise(aes(y = after_stat(summarise),

label = after_stat(summarise)),
position = position_stack(vjust = .5), geom = "text", fun = mean)

theme_ggside_grey ggside custom themes

Description

Theme elements to help customize the look and feel of ggside’s side panels.

Usage

theme_ggside_grey(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_gray(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_bw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_linedraw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_light(

66 theme_ggside_grey

base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_dark(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_minimal(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_classic(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_ggside_void(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

Arguments

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Details

Incomplete themes:

Unlike the complete themes like theme_grey, ggside’s variants are not considered "complete".
This is because the user may want to specify the side panels separately from the theme of the
main panel. This means that theme_ggside_*() functions should be called after any of ggplot2’s
complete themes.

xside 67

ggside theme elements

ggside.panel.scale, ggside.panel.scale.x, ggside.panel.scale.y expects a scalar numeric that sets the scaling of side panels relative to the plotting width/height of the main panels. Default is set to 0.1. i.e. 0.1 indicates side panels are 1/10th the size of the main panel whereas 1 indicates side panel are the same size as main panels. .x will set the scale for the xside panel and .y will set the scale for the yside panel.

ggside.panel.spacing, ggside.panel.spacing.x, ggside.panel.spacing.y expects a scalar unit that sets the spacing between side panels and main panels. Default facet spacing is typically unit(5.5,"pt") whereas this element’s default is unit(2,"pt") to indicate the relationship a side panel has to the main panels. .x will set the space between the main panel and the yside panel, where as .y will set the space between the main panel and the xside panel.

ggside.panel.background Sets the background of the side panels. If unspecified, side panels inherit from panel.background

ggside.panel.grid, ggside.panel.grid.major, ggside.panel.grid.minor, ggside.panel.grid.major.x, ggside.panel.grid.major.y, ggside.panel.grid.minor.x, ggside.panel.grid.minor.y Grid lines for the side panels. These elements inherit from panel.grid and will default to the current theme’s panel.grid inheritance unless specifically set.

ggside.axis.text, ggside.axis.text.x, ggside.axis.text.y, ggside.axis.text.x.top, ggside.axis.text.x.bottom, ggside.axis.text.y.left, ggside.axis.text.y.right Tick labels along the side panel’s axis. Due to the layout of side panels, ggside.axis.text.x will only affect the yside panel’s x-axis text and ggside.axis.text.y will only affect the xside panel’s y-axis text. These elements inherit from axis.text and will default to the current theme’s axis.text inheritance scheme unless specifically set.

ggside.axis.line, ggside.axis.line.x, ggside.axis.line.y, ggside.axis.line.x.top, ggside.axis.line.x.bottom, ggside.axis.line.y.left, ggside.axis.line.y.right Lines along the side panel’s axis.Due to the layout of side panels, ggside.axis.line.x will only affect the yside panel’s x-axis text and ggside.axis.line.y will only affect the xside panel’s y-axis text. Theme elements inherit from axis.line and will default to the current theme’s axis.line inheritance scheme unless specifically set.

ggside.axis.ticks, ggside.axis.ticks.x, ggside.axis.ticks.y, ggside.axis.ticks.x.top, ggside.axis.ticks.x.bottom, ggside.axis.ticks.y.left, ggside.axis.ticks.y.right Tick marks along the side panel’s axis. Due to the layout of side panels, ggside.axis.ticks.x will only affect the yside panel’s x-axis text and ggside.axis.ticks.y will only affect the xside panel’s y-axis text. Theme elements inherit from axis.ticks and will default to the current theme’s axis.ticks inheritance scheme unless specifically set.

ggside.axis.ticks.length, ggside.axis.ticks.length.x, ggside.axis.ticks.length.y, ggside.axis.ticks.length.x.top, ggside.axis.ticks.length.x.bottom, ggside.axis.ticks.length.y.left, ggside.axis.ticks.length.y.right length of ticks along the side panel’s axis. Due to the layout of side panels, ggside.axis.ticks.length.x will only affect the yside panel’s x-axis text and ggside.axis.ticks.length.y will only affect the xside panel’s y-axis text. Theme elements inherit from axis.ticks.length and will default to the current theme’s axis.ticks.length inheritance scheme unless specifically set.

ggside.axis.minor.ticks, ggside.axis.minor.ticks.x, ggside.axis.minor.ticks.y, ggside.axis.minor.ticks.x.top, ggside.axis.minor.ticks.x.bottom, ggside.axis.minor.ticks.y.left, ggside.axis.minor.ticks.y.right Tick marks along the side panel’s axis. Due to the layout of side panels, ggside.axis.minor.ticks.x will only affect the yside panel’s x-axis text and ggside.axis.minor.ticks.y will only affect the xside panel’s y-axis text. Theme elements inherit from axis.minor.ticks and will default to the current theme’s axis.minor.ticks inheritance scheme unless specifically set.

ggside.axis.minor.ticks.length, ggside.axis.minor.ticks.length.x, ggside.axis.minor.ticks.length.y, ggside.axis.minor.ticks.length.x.top, ggside.axis.minor.ticks.length.x.bottom, ggside.axis.minor.ticks.length.y.left, ggside.axis.minor.ticks.length.y.right length of minor ticks along the side panel’s axis. Due to the layout of side panels, ggside.axis.minor.ticks.length.x will only affect the yside panel’s x-axis text and ggside.axis.minor.ticks.length.y will only affect the xside panel’s y-axis text. Theme elements inherit from axis.minor.ticks.length and will default to the current theme’s axis.minor.ticks.length inheritance scheme unless specifically set.

Examples

library(ggplot2)
library(ggside)

p <- ggplot(iris, aes(Sepal.Width, Petal.Length, color = Species)) +
geom_point() +
geom_xsidedensity() +
geom_ysidedensity() +
theme_dark()

p

p + theme_ggside_classic()
p + theme_ggside_void()
p + theme_ggside_linedraw() +
theme(ggside.panel.border = element_rect(colour = "red"))

xside The xside geometries

68 xside

Description

xside refers to the api of ggside. Any geom_ with xside will plot its respective geometry along the
x-axis per facet panel. By default the xside panel will plot above the main panel. This xside panel
will always share the same scale as it’s main panel, but is expected to have a separate y-axis scaling.

Value

geom_xside* return a XLayer object to be added to a ggplot

New Aesthetics

All xside Geometries have xfill, xcolour/xcolor available for aesthetic mappings. These map-
pings behave exactly like the default counterparts except that they are considered separate scales.
All xside geometries will use xfill over fill, but will default to fill if xfill is not provided.
The same goes for xcolour in respects to colour. This comes in handy if you wish to map both
fill to one geometry as continuous, you can still map xfill for a separate xside geometry without
conflicts. See more information in vignette("ggside").

Exported Geometries

The following are the xside variants of the ggplot2 Geometries

• geom_xsidebar

• geom_xsideboxplot

• geom_xsidecol

• geom_xsidedensity

• geom_xsidefreqpoly

• geom_xsidehistogram

• geom_xsideline

• geom_xsidepath

• geom_xsidepoint

• geom_xsidetext

• geom_xsidetile

• geom_xsideviolin

See Also

yside

yside 69

yside The yside geometries

Description

yside refers to the api of ggside. Any geom_ with yside will plot its respective geometry along the
y-axis per facet panel. The yside panel will plot to the right of the main panel by default. This yside
panel will always share the same scale as it’s main panel, but is expected to have a separate x-axis
scaling.

Value

geom_yside* return a YLayer object to be added to a ggplot

New Aesthetics

All yside Geometries have yfill, ycolour/ycolor available for aesthetic mappings. These map-
pings behave exactly like the default counterparts except that they are considered separate scales.
All yside geometries will use yfill over fill, but will default to fill if yfill is not provided.
The same goes for ycolour in respects to colour. This comes in handy if you wish to map both
fill to one geometry as continuous, you can still map yfill for a separate yside geometry without
conflicts. See more information in vignette("ggside").

#’ @section Exported Geometries:

The following are the yside variants of the ggplot2 Geometries

• geom_ysidebar

• geom_ysideboxplot

• geom_ysidecol

• geom_ysidedensity

• geom_ysidefreqpoly

• geom_ysidehistogram

• geom_ysideline

• geom_ysidepath

• geom_ysidepoint

• geom_ysidetext

• geom_ysidetile

• geom_ysideviolin

See Also

xside

Index

∗ datasets
parse_side_aes, 59
position_rescale, 59
stat_summarise, 63

aes(), 6, 8, 12, 15, 18, 21, 24, 27, 30, 32, 35,
38, 41, 43, 57, 63

as_ggside, 3
as_ggside_layer (ggside_layer), 56
as_ggsideCoord (ggside-deprecated), 47
as_ggsideFacet (ggside-deprecated), 47

borders(), 10, 14, 17, 19, 22, 25, 28, 31, 34,
36, 40, 42, 45, 58, 64

check_scales_collapse, 4
coord_cartesian(), 49, 52

discrete_scale, 53
draw_key, 58

expansion(), 49, 52, 54

FacetGrid, 4
FacetNull, 4
FacetWrap, 4
fortify(), 6, 8, 12, 16, 18, 24, 27, 30, 33, 35,

38, 41, 44, 57, 63

geom_*abline, 5
geom_*abline (geom_xsideabline), 5
geom_*freqpoly (geom_xsidefreqpoly), 17
geom_*hline, 5
geom_*hline (geom_xsideabline), 5
geom_*sidebar (geom_xsidebar), 7
geom_*sidebar(), 25
geom_*sideboxplot, 45
geom_*sideboxplot (geom_xsideboxplot),

11
geom_*sidedensity (geom_xsidedensity),

15

geom_*sidefunction
(geom_xsidefunction), 20

geom_*sidehistogram
(geom_xsidehistogram), 23

geom_*sidelabel (geom_xsidelabel), 26
geom_*sideline (geom_xsideline), 29
geom_*sidepoint (geom_xsidepoint), 32
geom_*sidesegment (geom_xsidesegment),

34
geom_*sidetext (geom_xsidetext), 37
geom_*sidetile (geom_xsidetile), 40
geom_*sideviolin, 14
geom_*sideviolin (geom_xsideviolin), 43
geom_*vline, 5
geom_*vline (geom_xsideabline), 5
geom_abline, 5
geom_bar, 7
geom_boxplot, 11
geom_col, 7
geom_density, 15
geom_freqpoly, 17
geom_function, 20
geom_histogram, 23
geom_hline, 5
geom_label, 26
geom_line, 29
geom_path, 29
geom_point, 32
geom_segment, 34
geom_text, 37
geom_tile, 40
geom_violin, 43
geom_vline, 5
geom_xsideabline, 5
geom_xsidebar, 7, 7, 68
geom_xsideboxplot, 11, 11, 68
geom_xsidecol, 7, 68
geom_xsidecol (geom_xsidebar), 7
geom_xsidedensity, 15, 15, 68

70

INDEX 71

geom_xsidefreqpoly, 17, 17, 68
geom_xsidefunction, 20
geom_xsidehistogram, 10, 23, 23, 68
geom_xsidehline (geom_xsideabline), 5
geom_xsidelabel, 26
geom_xsideline, 29, 68
geom_xsidepath, 68
geom_xsidepath (geom_xsideline), 29
geom_xsidepoint, 32, 68
geom_xsidepoint(), 32
geom_xsidesegment, 34
geom_xsidetext, 37, 68
geom_xsidetile, 40, 68
geom_xsideviolin, 43, 68
geom_xsidevline (geom_xsideabline), 5
geom_ysideabline (geom_xsideabline), 5
geom_ysidebar, 7, 69
geom_ysidebar (geom_xsidebar), 7
geom_ysideboxplot, 11, 69
geom_ysideboxplot (geom_xsideboxplot),

11
geom_ysidecol, 7, 69
geom_ysidecol (geom_xsidebar), 7
geom_ysidedensity, 15, 69
geom_ysidedensity (geom_xsidedensity),

15
geom_ysidefreqpoly, 17, 69
geom_ysidefreqpoly

(geom_xsidefreqpoly), 17
geom_ysidefunction

(geom_xsidefunction), 20
geom_ysidehistogram, 10, 23, 69
geom_ysidehistogram

(geom_xsidehistogram), 23
geom_ysidehline (geom_xsideabline), 5
geom_ysidelabel (geom_xsidelabel), 26
geom_ysideline, 69
geom_ysideline (geom_xsideline), 29
geom_ysidepath, 69
geom_ysidepath (geom_xsideline), 29
geom_ysidepoint, 69
geom_ysidepoint (geom_xsidepoint), 32
geom_ysidepoint(), 32
geom_ysidesegment (geom_xsidesegment),

34
geom_ysidetext, 69
geom_ysidetext (geom_xsidetext), 37
geom_ysidetile, 69

geom_ysidetile (geom_xsidetile), 40
geom_ysideviolin, 69
geom_ysideviolin (geom_xsideviolin), 43
geom_ysidevline (geom_xsideabline), 5
GeomXsideabline (parse_side_aes), 59
GeomXsidebar (parse_side_aes), 59
GeomXsideboxplot (parse_side_aes), 59
GeomXsidecol (parse_side_aes), 59
GeomXsidedensity (parse_side_aes), 59
GeomXsidefunction (parse_side_aes), 59
GeomXsidehline (parse_side_aes), 59
GeomXsidelabel (parse_side_aes), 59
GeomXsideline (parse_side_aes), 59
GeomXsidepath (parse_side_aes), 59
GeomXsidepoint (parse_side_aes), 59
GeomXsidesegment (parse_side_aes), 59
GeomXsidetext (parse_side_aes), 59
GeomXsidetile (parse_side_aes), 59
GeomXsideviolin (parse_side_aes), 59
GeomXsidevline (parse_side_aes), 59
GeomYsideabline (parse_side_aes), 59
GeomYsidebar (parse_side_aes), 59
GeomYsideboxplot (parse_side_aes), 59
GeomYsidecol (parse_side_aes), 59
GeomYsidedensity (parse_side_aes), 59
GeomYsidefunction (parse_side_aes), 59
GeomYsidehline (parse_side_aes), 59
GeomYsidelabel (parse_side_aes), 59
GeomYsideline (parse_side_aes), 59
GeomYsidepath (parse_side_aes), 59
GeomYsidepoint (parse_side_aes), 59
GeomYsidesegment (parse_side_aes), 59
GeomYsidetext (parse_side_aes), 59
GeomYsidetile (parse_side_aes), 59
GeomYsideviolin (parse_side_aes), 59
GeomYsidevline (parse_side_aes), 59
ggplot(), 6, 8, 12, 16, 18, 24, 27, 30, 33, 35,

38, 41, 44, 57, 63
ggplot2, 4, 68, 69
ggproto, 59
ggside, 46, 65
ggside-deprecated, 47
ggside-ggproto-facets

(check_scales_collapse), 4
ggside-ggproto-geoms (parse_side_aes),

59
ggside-scales-binned, 47
ggside-scales-continuous, 50

72 INDEX

ggside-scales-discrete, 53
ggside-theme (theme_ggside_grey), 65
ggside_coord, 47, 55
ggside_facet, 47
ggside_facet (check_scales_collapse), 4
ggside_geom, 56
ggside_layer, 56
ggside_layout, 58
grid::arrow(), 31, 36
guides(), 50, 52, 54

is.ggside, 58
is.ggside_layer (is.ggside), 58
is.ggside_options (is.ggside), 58
is.ggside_scale (is.ggside), 58

key glyphs, 7, 9, 13, 16, 19, 22, 25, 28, 31,
34, 36, 39, 42, 44

lambda, 49, 51, 52, 54
layer, 58, 59, 64
layer geom, 22, 57, 64
layer position, 9, 13, 16, 19, 21, 24, 27, 31,

33, 36, 39, 41, 44, 57, 64
layer stat, 9, 12, 18, 21, 24, 27, 30, 33, 35,

38, 41, 57
layer(), 6, 7, 9, 13, 16, 19, 21, 22, 24, 25, 27,

28, 31, 33, 34, 36, 39, 41, 42, 44
length, 64

parse_side_aes, 59
position_rescale, 59
position_xrescale (position_rescale), 59
position_yrescale (position_rescale), 59
PositionRescale (position_rescale), 59

resolution(), 10
rlang::as_function(), 22

scale_x_binned, 47
scale_x_continuous, 50
scale_x_discrete, 53
scale_xcolor (scale_xcolour), 61
scale_xcolor_continuous

(scale_xcolour), 61
scale_xcolor_discrete (scale_xcolour),

61
scale_xcolor_gradientn (scale_xcolour),

61
scale_xcolor_manual (scale_xcolour), 61

scale_xcolour, 61
scale_xcolour_continuous

(scale_xcolour), 61
scale_xcolour_discrete (scale_xcolour),

61
scale_xcolour_gradient (scale_xcolour),

61
scale_xcolour_gradientn

(scale_xcolour), 61
scale_xcolour_hue (scale_xcolour), 61
scale_xcolour_manual (scale_xcolour), 61
scale_xfill, 61
scale_xfill_continuous (scale_xfill), 61
scale_xfill_discrete (scale_xfill), 61
scale_xfill_gradient (scale_xfill), 61
scale_xfill_gradientn (scale_xfill), 61
scale_xfill_hue (scale_xfill), 61
scale_xfill_manual (scale_xfill), 61
scale_xsidey_binned, 47
scale_xsidey_binned

(ggside-scales-binned), 47
scale_xsidey_continuous, 50
scale_xsidey_continuous

(ggside-scales-continuous), 50
scale_xsidey_discrete, 53
scale_xsidey_discrete

(ggside-scales-discrete), 53
scale_xsidey_log10

(ggside-scales-continuous), 50
scale_xsidey_reverse

(ggside-scales-continuous), 50
scale_xsidey_sqrt

(ggside-scales-continuous), 50
scale_y_binned, 47
scale_y_continuous, 50
scale_y_discrete, 53
scale_ycolor (scale_xcolour), 61
scale_ycolor_continuous

(scale_ycolour_hue), 62
scale_ycolor_discrete

(scale_ycolour_hue), 62
scale_ycolor_gradientn

(scale_ycolour_hue), 62
scale_ycolor_manual

(scale_ycolour_hue), 62
scale_ycolour (scale_xcolour), 61
scale_ycolour_continuous

(scale_ycolour_hue), 62

INDEX 73

scale_ycolour_discrete
(scale_ycolour_hue), 62

scale_ycolour_gradient
(scale_ycolour_hue), 62

scale_ycolour_gradientn
(scale_ycolour_hue), 62

scale_ycolour_hue, 62
scale_ycolour_manual

(scale_ycolour_hue), 62
scale_yfill (scale_xfill), 61
scale_yfill_continuous

(scale_yfill_hue), 62
scale_yfill_discrete (scale_yfill_hue),

62
scale_yfill_gradient (scale_yfill_hue),

62
scale_yfill_gradientn (scale_xfill), 61
scale_yfill_hue, 62
scale_yfill_manual (scale_yfill_hue), 62
scale_ysidex_binned, 47
scale_ysidex_binned

(ggside-scales-binned), 47
scale_ysidex_continuous, 50
scale_ysidex_continuous

(ggside-scales-continuous), 50
scale_ysidex_discrete, 53
scale_ysidex_discrete

(ggside-scales-discrete), 53
scale_ysidex_log10

(ggside-scales-continuous), 50
scale_ysidex_reverse

(ggside-scales-continuous), 50
scale_ysidex_sqrt

(ggside-scales-continuous), 50
scales::censor, 49
scales::censor(), 52
scales::extended_breaks(), 49, 51
scales::new_transform(), 50, 52
scales::pal_hue(), 53
scales::squish(), 49, 52
scales::squish_infinite(), 49, 52
sec_axis(), 52
sidePanelLayout

(check_scales_collapse), 4
stat_summarise, 63
stat_summarize (stat_summarise), 63
stat_xsidefunction

(geom_xsidefunction), 20

stat_ysidefunction
(geom_xsidefunction), 20

StatSummarise (stat_summarise), 63
StatSummarize (stat_summarise), 63

theme_ggside_bw (theme_ggside_grey), 65
theme_ggside_classic

(theme_ggside_grey), 65
theme_ggside_dark (theme_ggside_grey),

65
theme_ggside_gray (theme_ggside_grey),

65
theme_ggside_grey, 65
theme_ggside_light (theme_ggside_grey),

65
theme_ggside_linedraw

(theme_ggside_grey), 65
theme_ggside_minimal

(theme_ggside_grey), 65
theme_ggside_void (theme_ggside_grey),

65
theme_grey, 66
transformation object, 49, 51

xside, 5, 7, 11, 15, 17, 20, 23, 26, 29, 34, 37,
40, 43, 47, 50, 53, 67, 69

yside, 5, 7, 11, 15, 17, 20, 23, 26, 29, 34, 37,
40, 43, 47, 50, 53, 68, 69

	as_ggside
	check_scales_collapse
	geom_xsideabline
	geom_xsidebar
	geom_xsideboxplot
	geom_xsidedensity
	geom_xsidefreqpoly
	geom_xsidefunction
	geom_xsidehistogram
	geom_xsidelabel
	geom_xsideline
	geom_xsidepoint
	geom_xsidesegment
	geom_xsidetext
	geom_xsidetile
	geom_xsideviolin
	ggside
	ggside-deprecated
	ggside-scales-binned
	ggside-scales-continuous
	ggside-scales-discrete
	ggside_coord
	ggside_geom
	ggside_layer
	ggside_layout
	is.ggside
	parse_side_aes
	position_rescale
	scale_xcolour
	scale_xfill
	scale_ycolour_hue
	scale_yfill_hue
	stat_summarise
	theme_ggside_grey
	xside
	yside
	Index

